2000, Volume 63

Shamil Sh. Afiyatullov, Tatyana A. Kuznetsova,* Vladimir V. Isakov, Mikhail V. Pivkin, Nina G. Prokof'eva, and George B. Elyakov: New Diterpenic Altrosides of the Fungus Acremonium striatisporum Isolated from a Sea Cucumber.

Page 848: A revision in the structure of virescenoside N has been requested by the authors. The correlations observed in the COSY-45 and HSQC NMR spectra of virescenoside N and double resonance experiments indicated the presence of the following isolated spin-system: >CH-CH₂-CHOH- (C-5-C-7). The COSY-45 data and HBMC correlations at δ 1.02 (H₃-17)/132.1 (C-14), 2.25 (H- 6α)/140.1 (C-8), and 4.39 (H-7)/132.1 (C-14) suggested the localization of the trisubstituted double bond (d 140.1 C, 132.1, CH) at the C-8, C-14 position (see Table 1). A direct comparison of ¹³C NMR shifts of N with the values published for 7a-hydroxysandaracopimar-8(14),15-dienoid derivatives confirmed this deduction. (De Kimpe, N.; Schamp, N; van Puyvelde, L.; Dube, S.; Chagnon-Dube, M.; Borremans, F.; Anteunia, M. J. O.; Declercg, J.-P.; Germain, G.; van Meerssche, M. J. Org. Chem. 1982, 47, 3628-3630; see also: Touche, E. M. G.; Lopez, E. G.; Reyes, A.

P.; Sanchez, H.; Honecker, F.; Achenbach, H. Phytochemistry 1997, 45, 387-390). The small coupling constants of the H-7 signal at δ 4.39 (1H, t, 3.2) indicated that virescenoside N contains an allylic secondary alcohol function with an axial configuration. On the basis of these data the corrected structure of virescenoside N is shown below.

Virescenoside N

NP0580863

10.1021/np0580863 Published on Web 08/05/2005

Table 1. ¹H and ¹³C NMR Data of Virescenoside N in C₅D₅N (J, Hz)

atom	δα	Â	HMBC	NOFSV
atom	0C	ΟH	IIMBC	NOESI
1	$46.5~\mathrm{CH}_2$	α: 1.55 m	20	3, 9
		β : 2.35 dd (4.3, 12.7)	2, 3, 5, 10, 20	$2, 6\beta, 20$
2	$68.1 \mathrm{CH}$	4.33 m		1β , 19b, 20
				19a, 20
3	$84.1 \mathrm{CH}$	3.60 d (9.5)	2, 4, 18, 19	5, 18
4	$43.5~\mathrm{C}$			
5	$47.6~\mathrm{CH}$	2.33 dd (2.3, 12.8)	4, 6, 10	3, 9, 18
6	$31.3~\mathrm{CH}_2$	α: 2.25 dt (2.3, 13.4)	8, 10	18
		β : 2.00 td (3.4, 12.8, 13.4)		1β , 19b, 20
7	$72.2 \mathrm{CH}$	4.39 t (3.2)	5, 9, 14	14
8	$140.1~\mathrm{C}$			
9	$46.1 \mathrm{CH}$	2.53 m	8, 10, 14, 20	1α, 5
10	$39.3 \mathrm{C}$			
11	$18.8~\mathrm{CH}_2$	α: 1.60 m		
		β : 1.50 m		17, 20
12	$34.2~\mathrm{CH}_2$	1.40 m		
				17
13	$37.4~\mathrm{C}$			
14	$132.1 \mathrm{CH}$	5.55 d (1.6)	9, 12, 13, 15	7, 17
15	$148.5 \mathrm{CH}$	5.76 dd (10.6, 17.5)	12, 13, 14, 17	16, 17
16	$110.6~{ m CH_2}$	a: 4.91 dd (1.5, 10.6)	13	
		b: 4.97 dd (1.5, 17.5)	13, 15	17
17	$25.9 \mathrm{CH}_3$	1.06 s	12, 13, 14, 15	11β , 14, 15, 16b
18	$24.5 ext{ CH}_3$	$1.56 \mathrm{~s}$	3, 4, 5, 19	3, 5, 9, 19a,b
19	$72.3~\mathrm{CH}_2$	a: 4.18 d (10.2)	3, 4, 5, 18, 1-Alt	18, 20, 1-Alt
		b: 4.54 d (10.2)	3, 4, 5, 18	$2, 6\beta, 18, 20, 1$ -Alt
20	$15.8~\mathrm{CH}_3$	0.98 s	1, 5, 9, 10	1β , 2, 6β , 19a,b
		Alt (1→C-19)		
1'	101.2 CH	5.53 d (1.4)	19	19a,b, 5-Alt
2'	$71.7~\mathrm{CH}$	4.63 dd (1.4, 4.7)	3,4-Alt	
3'	$72.1 \mathrm{CH}$	4.77 dd (3.2, 4.7)	1,2,4,5-Alt	
4'	$66.7 \mathrm{CH}$	4.83 dd (3.2, 8.3)	5,6-Alt	
5'	$76.9 \mathrm{CH}$	4.57 m		1-Alt
6'	$63.2~\mathrm{CH}_2$	a: 4.41 dd (5.0, 11.4)	5-Alt	
		b: 4.51 dd (3.7, 11.4)		